
 1

Planning for V&V of the
Mars Science Laboratory Rover Software1,2

Martin S. Feather, Lorraine M. Fesq, Michel D. Ingham, Suzanne L. Klein

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr
Pasadena, CA 91109

{Martin.S.Feather, Lorraine.M.Fesq, Michel.D.Ingham, Suzanne.L.Klein}@jpl.nasa.gov

Stacy D. Nelson
NASA Ames Research Center

Moffett Field, CA 94035
& Nelson Consulting

2006 Hwy 101 #135, Florence, OR 97439
nelsonconsult@aol.com

1 0-7803-8155-6/04/$17.00©2004 IEEE
2 IEEEAC paper #1386, Version 4, Updated December 10, 2003

Abstract—NASA’s Mars Science Laboratory (MSL) rover
mission is planning to make use of advanced software
technologies in order to support fulfillment of its ambitious
science objectives. The mission plans to adopt the Mission
Data System (MDS) as the mission software architecture,
and plans to make significant use of on-board autonomous
capabilities (e.g., path planning, obstacle avoidance) for the
rover software. The use of advanced software technologies
embedded in an advanced mission software architecture
represents a turning point in software for space missions.
While prior flight experiments (notably the Deep Space One
Remote Agent Experiment) have successfully demonstrated
aspects of autonomy enabled by advanced software
technologies, and MDS has been tested in ground
experiments (e.g., on-earth tests on rover hardware), MSL
will be the first science mission to rely on this combination.
The success of the MSL mission is predicated upon our
ability to adequately verify and validate the advanced
software technologies, the MDS architectural elements, and
the integrated system as a whole. Because MSL is proposing
a shift from traditional approaches to flight software,
approaches to verification and validation (V&V) require
scrutiny to determine whether traditional methods are
adequate, and where they need adjustment and/or
augmentation to handle the new challenges. This paper
presents a study of the V&V needs and opportunities
associated with MSL’s novel approach to mission software,
and provides an assessment of V&V techniques, both
current and emerging, vis-à-vis their adequacy and
suitability for V&V of the MSL rover software.

 TABLE OF CONTENTS

1. INTRODUCTION..1
2. MISSION RISKS DUE TO SOFTWARE2
3. RISK MITIGATION: V&V APPROACHES4
4. RISK MITIGATION: THE MDS APPROACH..............9
5. FUTURE WORK ..11
ACKNOWLEDGEMENT...14
REFERENCES ...14
BIOGRAPHIES ..14
APPENDIX ..16

 1. INTRODUCTION

NASA’s Mars Science Laboratory (MSL) mission, currently
being designed at the Jet Propulsion Laboratory (JPL), is a
rover-based exploration mission scheduled for launch in
2009. MSL’s science and engineering goals expand on
previous Mars rover missions, and include enhanced
capabilities such as hazard detection and avoidance, goal-
based commanding, on-board goal elaboration, for the
purposes of long-distance traverse and science instrument
placement. These enhanced capabilities take shape through
the use of advanced software technologies and a state-of-the-
art embedded software architecture, the Mission Data
System (MDS). In addition to providing a modular
component-based architecture, MDS provides MSL with a
systematic process for capturing requirements, an approach
to modeling states of the system and the relationships
between states, and a mechanism for goal-based control of

© 2004 IEEE; Proceedings of the 2004 IEEE Aerospace Conference, Big Sky, Montana, March 6-13 2004.
Volume 1, pages 682-697

 2

the spacecraft.

This paper describes our approach to addressing the V&V
challenges introduced by the use of MDS and other
advanced software technologies on a rover. In Section 2 we
analyze the problem addressed through software V&V,
namely, the prevention and discovery of software defects.
Defects can be viewed as a risk to the mission, and we begin
by understanding and assessing these risks versus other
software risks. Based on an in-depth literature search,
survey of NASA and aerospace experts and experience of
the authors, we developed an extensive list of software
defects relevant to rover software.. We also discuss
limitations in traditional mission software design
approaches. In Section 3, we outline the traditional approach
to verifying and validating mission software. We then
describe surveys we have performed of the V&V field to
identify additional tools and processes that are available to
prevent or detect software defects. We also discuss state-of-
the-art V&V tools that could help address the V&V
challenges and opportunities posed by the use of advanced
software technologies. Finally, we identify V&V techniques
used by other industries that develop and deploy embedded,
real-time, mission-critical software. Section 4 introduces the
MDS concepts that address the limitations in traditional
mission software described in Section 2. We also examine
the V&V needs and opportunities that are introduced by the
use of MDS. Section 5 looks to the future and describes how
we will seek to combine all of the information described in
the earlier sections to perform cost-risk trade analyses using
JPL’s Defect Detection and Prevention (DDP) tool. This
effort will allow the MSL project to assess the most cost-
effective V&V techniques to apply to the rover software, in
order to accomplish mitigating the greatest number of
software defects, given its available resources.

 2. MISSION RISKS DUE TO SOFTWARE

Projects have long considered potential hardware problems
in their evaluation of project risks and have developed
formal techniques, such as fault tree analysis, to aid in their
evaluation. Examining software risks is relatively new and
far less mature. Software risk examination is starting to
come of age, however, as shown by a wealth of recent
surveys that have been performed to determine the most
prevalent risks in the software industry. For example,
DeMarco has published a list of five core risks that are so
prevalent throughout the software industry that they affect
virtually every project that requires software [1]. We
reproduce these core risks in Table 1.

Table 1. Core project risks due to software [1]
 Core Risks Area Description
1 Faulty

Software
Schedule or
Budget

Planning An error in the
schedule or budget
rather than in the
software development
and testing process;
usually an
underestimate of the
cost and schedule.

2 Software
Requirements
Inflation

Requirement
& Design

Significant increase
in the number of
software
requirements over
time.

3 Software
Employee
Turnover

Staffing High number of
programmers leaving
a project – often not
considered in budget
estimates.

4 Software
Specification
Breakdown

Planning A breakdown in
negotiation; the
majority of
stakeholders can’t
agree on what they
are building.

5 Poor
Productivity

Experience
& Teaming

Under performance
due to an insufficient
number of
programmers with the
required skills and
experience.

The surprising thing about DeMarco’s core software risks is
how little they seem to relate to what most software
implementers would consider software risks – namely
potential defects in the software. Three of the core risks –
(faulty schedule/budget, employee turnover, and
productivity) are not technical in nature and the other two
risks appear to be associated mainly with early stage, high-
level software technical development. But, in fact, defects in
software “bubble up,” affecting schedule and budget (Risk
1). The number of software defects is a reflection of the
number of employees involved, their degree of expertise,
and their productivity (Risks 3 & 5). Software requirements
inflation (Risk 2) and software specification breakdown
(Risk 4) are influenced by the need to avoid potential
software implementation problems that are already apparent
in requirements and design. In essence, potential software
defects are to a considerable extent at the heart of the core
risks, and, as such, may be thought of as fundamental risks
to any mission. For this reason, we have chosen to treat
potential defects as a subcategory of software risk to which
risk management techniques should be applied and to which
proactive solutions (mitigations and preventions) need to be
found. The next sub-section describes our efforts to capture
and document a comprehensive view of software defects that

 3

enter into mission software. The following subsection
discusses some limitations of the traditional approach to
mission software; these limitations contribute to the level of
risk associated with the software, and can be a source of
potential defects.

Generic Software Defects

In order to determine which V&V techniques are most
effective, it is important to understand what kinds of
software defects can occur at each phase of the software
development lifecycle. The software lifecycle “V-chart”
(shown in Figure 1) identifies the phases typically found in
developing software, as well as the concepts of verification
and validation with respect to these phases. This lifecycle
model is generic and can be applied to various software
development methodologies including the iterative
incremental methodology used for MDS.

Using the lifecycle as a foundation, a comprehensive list of
common software defects organized by lifecycle phase was
compiled based on an extensive literature search, the
combined experience of the authors, and a survey of experts

at NASA and in the aerospace industry [2].

The software defects lists contain over 200 defects,
organized into lifecycle phases. Examples, one from each
phase, are included in the table in the Appendix.

Limitations of Traditional Mission Software

In this section, we describe some of the limitations of the
traditional approach to mission software design that can
cause defects and contribute to the level of risk associated
with the software.

Subsystem-based encapsulation In traditional approaches
to designing mission software, code is “compartmentalized”
in various ways, e.g. flight vs. ground vs. test, and by
subsystem (power, thermal, navigation, etc). As a result,
each subsystem's software engineering and programming
teams tend to apply customized solutions to problems in
their subsystem, leading to minimal amounts of software
reuse across the different subsystems. Furthermore, in
addition to the problem of inefficiency, this approach leads
to increased interface complexity between subsystems, as

Figure 1 - Software Development Lifecycle

 4

many important mission considerations, such as onboard
resource limitations, introduce coupling across subsystem
boundaries [3]. Getting the interfaces right generally
requires many iterations on the part of multiple subsystem
software teams.

Lack of Explicit Representation of System Knowledge In
traditional approaches to embedded software, and spacecraft
mission software in particular, programs are written such
that they prescribe the desired state evolution implicitly,
through low-level commands to actuators and references to
sensors. Their implicit consideration of state makes these
programs hard to encode, requiring translation of the system
behavior as understood by the systems engineer into the
flight code as written by the software engineer. This
translation process also results in a verification challenge, by
opening up the possibility for inconsistencies between the
system specification and the flight code, and by making
these inconsistencies particularly hard to identify during
code reviews.

Open-loop Command Sequences The traditional approach
to controlling spacecraft is through nominal command
sequences, which are time-tagged lists of commands and
macros. These sequences specify actions down to the level
of detailed hardware commands, whose effects can
potentially be felt across spacecraft subsystem boundaries.
Once uploaded to the onboard flight computer, these
sequences are executed by simply issuing the appropriate
commands at their specified times, in open-loop fashion [4].
These low-level command sequences do not capture any
notion of the operator’s intent, resulting in non-robust
behavior in the face of off-nominal execution. Thus, to build
confidence that the spacecraft will behave as predicted,
engineers must perform careful modeling and extensive
testing of these sequences on sophisticated hardware-in-the-
loop simulation testbeds, as well as on the flight hardware
itself, prior to launch.

Mixed Estimation and Control In traditional mission
software, control logic is frequently intermingled with state
determination logic. This can lead to inefficiency and
unnecessary redundancy, where controllers in multiple
subsystems use multiple instances of the same estimation
algorithms. More importantly, this approach allows for the
possibility that different estimates of state could be used by
different controllers in the system, potentially resulting in
dangerous inconsistencies among control actions that should
be correlated.

Fault Protection as an Add-On Capability For flight
activities where more flexible event-driven execution is
necessary, time-triggered command sequences are
insufficient due to their inability to represent conditional
response. Thus, timed command sequences are traditionally
augmented with rule-based engines [5] or hard-coded state
machines [6] running as concurrent processes, which

periodically check the available onboard measurements for
satisfaction of a trigger condition and issue predetermined
commands or macros in response. These conditional
execution mechanisms are also used for onboard fault
protection. Off-nominal behavior is usually handled by
putting the spacecraft into “safe mode,” in which all non-
essential functions are disabled and the spacecraft calls for
help from the ground operators. These interventions can be
costly, both in terms of ground operations costs and the
science opportunities lost while in safe mode.

During mission-critical activities, such as planetary fly-bys,
orbital insertion and entry, descent and landing, the act of
putting a spacecraft into safe mode would result in loss of
the mission. In such situations, standard fault responses are
usually disabled, and fault protection is provided by highly
specialized dedicated sequences, which tend to be
significantly more complex than non-critical sequences.
Generating and testing these critical sequences is an
extremely expensive process; this cost can dominate the
mission operations budget even though these sequences
represent a small fraction of the overall mission duration [7].
Furthermore, at execution time, the complexity problem is
exacerbated by the very short time available for recovery
from anomalies, and can result in “brittle,” non-robust
behavior in unexpected off-nominal conditions.

In this section, we have discussed two major sources of risk
to a mission introduced by software; namely, software
defects that can be introduced throughout any of the
lifecycle phases, and limitations in the traditional approach
to designing mission software. In the next two sections, we
turn our attention to mitigation approaches that address these
risks.

 3. RISK MITIGATION: V&V APPROACHES

Two approaches to V&V can be employed to mitigate the
risks introduced by software defects: prevention, that is,
providing mechanisms and processes that will prohibit
defects from being introduced into the software, and
detection, or the uncovering of defects that have been
introduced. In this section, we survey the traditional V&V
approaches used by the aerospace industry to prevent and
detect software defects. We then provide a view into an
abundance of tools and techniques that are available for use
today, but not yet adopted as mainstream practices. We then
describe the results of our survey of V&V practices
followed outside of the aerospace industry by industries that
develop similar software; i.e., real-time, embedded mission
critical software. Finally, we look toward the future at a
number of promising V&V tools are on the horizon.

Traditional V&V Techniques

Traditional V&V techniques are based upon methods such
as fault tree analyses (FTA), failure modes, effects and
criticality analyses (FMECA), design reviews, code reviews,

 5

and, above all, test plans and procedures whose aim is to
verify and validate software requirements through the use of
one of four methods:

• Test - Comparison between actual and expected
results

• Demonstration
• Inspection
• Analysis

Comparison of expected with actual results is most often
used for determining whether performance requirements
have been met. Demonstration is typically used when the
results are visually obvious; for instance, when verifying that
the layout of a GUI meets specifications. Software
inspections are strict and close examinations conducted on
requirements, specifications, architectures, designs, code,
test plans and procedures, and other artifacts. They check
primarily for completeness, correctness, and consistency.
Analysis is most often used when large amounts of data must
be scrutinized before it is possible to verify that complex
algorithms are being implemented correctly.

Informal verification is traditionally done during coding and
unit testing. Formal qualification V&V is performed during
software and system integration. The test plans and
procedures for unit testing are typically drawn up and
executed by the software implementers themselves and the
tests are witnessed and the results verified, validated, and

recorded by Quality Assurance (QA) personnel based upon
the test plan. Formal V&V testing is traditionally done by
independent testers (persons other than the implementers),
and witnessed, recorded, and the results verified and
validated by QA. Traditional V&V testing employs largely
manual procedures with little or no use of techniques other
than the four methods already indicated and with little use of
automated tools.

Currently available V&V Tools and Techniques

A weakness of traditional V&V is that it makes little use of
new, currently available techniques or of existing automated
tools for verification, but rather relies on techniques that
have been around for over 20 years and on occasion, “home
grown” tools created by testers to verify specific software.
The tendency to continue with the status quo is also
surprising since a casual search of the web and of NASA
sites reveals a number of techniques and currently available
commercial tools that could be very useful. This situation
motivates our current effort to explore the benefits that new
and emerging tools could provide to the existing V&V
process. Figure 2 depicts the traditional software lifecycle
V-chart that was introduced in Figure 1, annotated with a
selection of traditional V&V approaches currently used in
the aerospace industry, and augmented with additional
techniques that are either currently available or under
development.

Figure 2 - V&V techniques aligned with lifecycle phases. Inner columns (light blue) show current aerospace practices;
outer columns (green) highlight other available techniques.

 6

A number of useful commercial grade tools are presently
available that are capable of automatically verifying design
architecture or of scouring unit and integrated code for
defects or both.

Among currently available commercial grade tools, most can
be categorized by identifying the phase of the software life
cycle they address and the techniques they use (see Table 2).

Table 2. Currently available V&V techniques
categorized by software lifecycle phase

LIFECYCLE PHASE V&V TECHNIQUE

System Requirements Requirements Consistency
Analysis

System Design Requirements Consistency
Analysis

Software Requirements Requirements
Modeling/Analysis

Software Architectural
Design

Architectural Design
Modeling/Analysis

Software Design Detailed Design Verification

Software Coding Auto-Code Generation

Software Unit Testing Auto-Test Case Generation

We provide a brief overview of these techniques below.

Requirements Consistency Analysis Tools that use this
technique check requirements definitions. They are capable
of performing requirement consistency checks that uncover
problems such as subtle partitioning errors, logic errors,
algorithmic errors, and data dictionary variable definition
defects.

Requirements Modeling/Analysis These tools perform
either static or dynamic analysis at the requirements level,
and usually include requirement model animation and
requirements model property checking.

Architectural Design Modeling/Analysis These tools are
capable of checking the architectural design for consistency
and can perform behavior checking and reachability analysis
via simulation.

Detailed Design Verification Few of the detailed design
verification tools verify exactly the same detailed design
attributes. And none are complete design verifiers. As a
result, to cover detailed design verification and validation, a
suite of design verification tool may be required.
Capabilities of the design verification tools include the
following features:

• Verification of safety and “liveness” properties
• Verification of user correctness requirements

• Verification of parameters
• Validation of protocol systems (e.g.,

communication)
• Validation of the design model during simulated

execution
• Limited performance verification support
• Traces of logical design errors in distributed

systems design
• Reachability analysis at a more refined level
• Detection of race conditions and deadlocks
• Detection of timing violations
• Detection of concurrency errors

Auto-Code Generation The objective of these tools is not
to simply check the design or to check for defects that may
have occurred, but to prevent defects in the first place. The
approach is to change the developer's point of view from
writing code, or assembling software components, to
modeling the system to be built. The design then is
implemented through automatically generated code. These
tools operate on the premise that if the design is correct, and
the design can be automatically verified, then the generated
code will defect-free. These tools tend to have the following
additional features:

• Requirements traceability
• Model Checking (checks for completeness)
• Validation through design-level debugging

Auto-Test Case Generation Test code generation tools
generate test cases based upon minimum, maximum and
mid-range values. Most include a range of additional
features such as:

• Automatic generation and compilation of test stubs
and driver programs

• Interactive point-and-click and script-generated test
case construction

• Test case modification and re-execution without re-
compilation

• Automatic regression testing
• Standards compliant test report generation
• Basis path analysis and cyclomatic complexity
• Test execution on both host and embedded target

development systems

After compiling a comprehensive list of V&V tools,
techniques and processes available, we examined them and
identified the relevant defects that were addressed by each.
A sample of this cross-correlation between each identified
software risk (i.e., the defect) and the possible ways to
mitigate these risks (i.e., the V&V tools, techniques and
processes) is shown in the Appendix.

Survey of V&V techniques for Mission critical Software

Software plays an increasingly crucial role in all aspects of
modern life from flight to driving to power generation to
defense to medical devices, etc (see Figure 3). Therefore,

 7

we must be able to trust that software is reliable and will act
according to intended design.

Highly Reliable
Software Required

Transportation

Aerospace

Defense

Medical Devices

Nuclear Power

Figure 3 - Industries Requiring Highly Reliable Software

For the purposes of this paper, the following definitions
apply [8]:

• Mission-critical software: loss of software
capability can lead to possible reduction in mission
effectiveness

• Safety-critical software: software failure or
design error could jeopardize human life

Currently, key facets of reliable software depend upon the
thoroughness of the software development process, i.e., the
software lifecycle. Software lifecycles vary across
industries and across projects within the same industry, but
the overall idea is the same: assemble a team of competent
software developers to determine the intended software
behaviors (requirements), develop code to accomplish these
behaviors, then submit the requirements and code to a team
of V&V specialists who check them via a variety of
techniques including testing, simulation, and formal
methods.

Finally, the code is evaluated by an independent team of
software development experts who review the software
during formal review sessions to decide whether it meets its
objectives. If the software is deemed safety-critical (has
potential for loss of life), the reviewers generally ask
themselves whether they would be willing to use the
software. They consider questions such as: Would I risk
my life to fly on an airplane with this digital flight control
system? Would I drive an automobile with this anti-lock
brake design? If the answer is yes then the software is
submitted for system certification. Generally, software does
not receive a stand-alone certification. Only integrated
systems including hardware and software are certified.

If the software is mission-critical (potential for loss of
spacecraft, mission data, etc) then reviewers consider
whether test results indicate a significant likelihood of

mission success. If yes, then the software is approved for
implementation. Approving software is a rigorous process.
To make the approval decision, reviewers must believe,
based on the facts presented, that the software has been
thoroughly checked.

This section summarizes key processes used across industry
and government in the United States and Europe to
determine whether software is safe and reliable. These
processes reveal the following common themes:

• Standards exist, containing lessons learned from
prior development projects to promote safer, more
reliable software.

• Review boards make decisions about the software
safety and reliability based on trust in the
development team, demonstration of key software
capabilities in high-fidelity simulators and rigorous
and thorough V&V (including testing).

• Software sometimes fails despite best efforts to
verify and validate capabilities.

• Formal methods can uncover hard-to-find errors
like race conditions.

• Software reliability metrics generally consist of
keeping track of the number of issues (bugs). For
example, the Space Shuttle IV&V team computes
the following metrics [9]:

o Number of Issue Tracking Reports (ITRs)
per software release;

o Number of Days an ITR remained open –
a measure of complexity;

o Severity of Open and Closed ITRs.

The following techniques have proven to be necessary for
developing safety-critical software across all industries:

• Testing based on key scenarios designed to check
that software works as intended.

• Simulation beginning on low fidelity testbeds and
occurring on higher fidelity testbeds until final tests
occur on the actual hardware. This promotes cost
containment by allowing developers to find and
correct anomalies early in development before
exposing expensive hardware to possible failures.

• Demonstrations of working software to qualified
review boards in accordance with industry
standards. Certification or approval by review
boards is consistent across all industries.
Therefore, individual projects succeed or fail based
on the aptitude of these review boards.

While ANSI/IEEE standards [10] contain a plethora of
metrics, review boards in the United States currently

 8

emphasize the following criteria to determine whether
software is safe and reliable:

• Test results
• Demonstration of software in high-fidelity test beds
• Trust in the experience and expertise of the

development and verification/validation teams

Review boards in Europe and Canada supplement reliance
upon experienced teams and demonstrations with effective
use of formal methods to prove software correctness
properties.

Unfortunately, software errors still occur. The following
additional techniques (in alphabetical order) were used
across at least three industries. The industries are noted in
parentheses:

• Formal Methods (Canada and European nuclear
power and transportation);

• Information Flow Analysis (aerospace, defense and
nuclear power);

• Partitioning (aerospace, nuclear power and
transportation);

• Risk/hazard assessment based on severity and
likelihood (aerospace, defense and transportation).

The aerospace, nuclear power and transportation industries
rely upon Fault Detection and Diagnosis as a safety net to
respond in the event of an unforeseen error resulting from
either V&V oversight or unexpected environmental
conditions.

To supplement the traditional lifecycle, the FAA and SAE
recommend building safety or reliability cases (justification)
as part of software development.

As software becomes more sophisticated, more software
failures are likely. The following section describes
advanced techniques that are emerging and have been used
in experiments (NASA, industry and academia) to improve
V&V of highly reliable software with promising results.

Emerging V&V Techniques

Emerging V&V Techniques are largely based on Formal
Methods [11], [12]. The term “Formal Methods” refers to
the use of techniques from logic and discrete mathematics
(discrete structures like set theory, automata theory, formal
logic as opposed to continuous mathematics like calculus) in
the specification, design and construction of computer
systems and software. The objective of Formal Methods as
a V&V technique is to reduce reliance on human intuition
and judgment by providing more objective and repeatable
tests.

For discussion purposes, Formal Methods are often
categorized into runtime monitoring, static analysis, model
checking and theorem proving. An overview of each

category follows, along with associated benefits and
challenges:

Runtime Monitoring evaluating code while it runs or
scrutinizing the artifacts (event logs, etc) of running code.

Benefits

• Requires a relatively small incremental effort over
traditional testing.

• Combines the ease of testing with the power of
Formal Methods.

• Can locate difficult to find error potential for
problems that test engineers may overlook.

Challenges

• Logic-based monitoring can add overhead to the
normal execution of programs.

• While detecting difficult-to-find errors, error
pattern runtime analysis can detect problems that
do not exist (false positives).

• Runtime monitoring observes the current program
execution, but does not observe all possible runs so
coverage is limited to actual program execution.

Static Analysis detects runtime errors and unpredictable
code constructs without executing code.

Benefits

• Verification can begin earlier in the software
lifecycle resulting in early detection/resolution of
problems and reduction in development cost.

Challenges

• The biggest challenge for Static Analysis is
generation of false positives. However, new tools
use statistical methods to reduce the number of
false positives. An analogy can be made between
the results of static analysis and the results of a
compiler where subsequent errors result from an
initial or upstream error. Correcting the initial
error can eliminate some false positives.

Model Checking automated technique for verifying finite
state concurrent systems. The model checker evaluates the
model by beginning with the initial states and repeatedly
applying transitions to reach all possible states.

Benefits

• Fast, automated method for exploring all relevant
execution paths of non-deterministic systems. This
is very important because it is virtually impossible
for humans to conceive of every test scenario

 9

required to verify a non-deterministic system in a
plausible time frame for software development.

• Can backtrack to explore alternative paths from a
common intermediate state, avoiding the costly
reset between tests required in traditional scenario-
based testing.

• Detects problems in the early stages of
development, thereby greatly reducing overall
development costs.

Challenges

• Models must be translated into special model
checking language.

• A model checker can run out of memory before
exploring the entire state space of the program.

Theorem Proving use of logical induction over the
execution steps of the program to prove system
requirements. In other words, system requirements can be
captured in complex mathematical equations and solved by
verification experts. Solving these equations proves that the
system is accurate.

Benefits

• Can use the full power of mathematical logic to
analyze and prove properties of any design.

Challenges

• Requires significant effort and expertise. Currently
suitable only for analysis of small-scale designs by
verification experts.

4. RISK MITIGATION: THE MDS APPROACH

As mentioned above, the Mission Data System (MDS) is an
embedded software architecture, currently under
development at NASA JPL. Its overarching goal is to
provide a multi-mission information and control architecture
for the next generation of robotic exploration spacecraft, that
will be used in all aspects of a mission: from development
and testing to flight and ground operations. In the process of
achieving this ambitious goal, the MDS team has rethought
the traditional mission software lifecycle, and has adopted a
vision that acknowledges and leverages the intimate
coupling between software and systems engineering:
“Software is part of and contributes substantially to a new
systems engineering approach that seamlessly spans the
entire project breadth and lifecycle.”[13]

The central themes of the MDS approach address many of
the limitations of traditional mission software designs
described earlier:

• State and models as the architectural foundations –
MDS is a state-based architecture, where state is
defined as the momentary condition of a dynamic
system. State is accessible in a uniform way through
state variables, instead of through local variables as in
traditional flight software. MDS emphasizes the
separation of application-specific knowledge, in the
form of models that describe how state evolves, from
reusable general-purpose code that operate on the
models to track and control state. MDS models can be
expressed in any convenient form, e.g., tables,
functions, rules, state machines, etc. The novelty in this
approach is that models are used explicitly, rather than
being “hidden” in the details of the flight code. This
leads to easier portability from mission to mission, as
only the models need to be updated with domain-
specific knowledge.

• Modular component framework – MDS strives to

identify common problems across embedded software
applications and provide common solutions, in the form
of shared core architecture components, such as
estimators, controllers and schedulers. This decreases
the amount of redundant (and potentially conflicting)
code written, and promotes consistency through
common resource coordination services provided by the
architecture. A simplified interpretation of the MDS
architecture is shown in Figure 4.

Figure 4 - MDS Architecture

• Goal-directed closed-loop operation – Instead of

issuing low-level open-loop commands, control
sequences issue goals that indicate intent in the form of
desired state. Goals are easier to specify than the actions
needed to achieve them, and result in more compact
specifications of desired behavior. Furthermore, goal-
directed operation goes hand-in-hand with closed-loop
control, because goals can be thought of as set points

 10

for onboard controllers, which are then given the
latitude to decide how best to achieve the goals.

• Separation of State Determination from State Control –

Unlike traditional approaches to embedded software, in
which control logic is intermingled with state
determination logic, MDS advocates making a clear
separation between these two key functions, which are
coupled solely through state variables. Taking this
approach allows state knowledge to be updated in a
unified, consistent way, for use by any control function
in the architecture. For instance, multiple controller
components might need to access the same state
variable. Keeping the state determination and state
control functions separate ensures that all active
controllers use a consistent estimate of state.
Furthermore, this type of increased modularity
simplifies component-level testing of various state
determination or control algorithms, and allows for
minimally invasive upgrades to individual state
determination and control components.

• Integrated fault protection – The goal-directed nature

of the MDS paradigm leads to intrinsic “fault
awareness” in the system; that is, fault detection,
diagnosis, and recovery are an integral part of the
design of the architecture. Intrinsic fault-awareness is
enabled by providing the control system with
knowledge of the operational intent (in the form of state
goals), and the ability to derive appropriate actions by
reasoning about the state of the system, instead of by
edict [14]. In MDS, fault states are included in the
behavior models and are treated just like any other state.
Fault detection, diagnosis and recovery are thus
performed in the same loops as the nominal estimation
and control processes. Another key element of robust
operations is the consideration of knowledge
uncertainty. In the MDS framework, state knowledge
uncertainty is tracked in an explicit way, within the state
variables. MDS also provides the ability to issue goals
on knowledge quality/certainty, a capability that is
generally not built into traditional flight software
architectures.

V&V Needs and Opportunities of the Mission Data System

Given that the MDS approach corresponds to a departure
from traditional mission software design, it is necessary to
consider how the use of MDS as the mission software
architecture for MSL will impact our V&V approach. Are
conventional V&V methods appropriate and sufficient for
an MDS-based system? If not, what aspects of the MDS
system require extensions or modifications to existing V&V
methodologies?

Another important question that should be posed is: does the
MDS framework enable or enhance the level of V&V that

can be applied to the system? The use of explicit state-based
models allows MDS to capture, in one place and using a
uniform representation, types of mission requirements that
have traditionally been documented in a variety of
documents using a variety of representations. Furthermore, it
enables MDS to explicitly capture assumptions about system
behavior that traditionally reside in the minds of systems
engineers, and are captured only implicitly in the flight
software. Thus, MDS provides the opportunity to formally
validate and verify these heretofore informally-specified
requirements and assumptions, through the application of
V&V to these models.

We have performed an analysis to identify the V&V needs
and opportunities that are particular to MDS, as adapted for
the MSL rover mission. In this section, we describe four of
the key V&V needs/opportunities that have emerged from
our analysis.

1) Verification of the MDS Component Architecture MDS
defines a set of rules that specify how different types of
components in the architecture (Figure 4) must be
connected. Verification of the component architecture for a
particular mission adaptation (e.g., the MSL adaptation)
involves checking for compliance of the component
connections with respect to the set of architecture rules.
Given a specification of the rules in a machine-checkable
form, and of the architecture as a formal model, this
verification may be performed automatically using state-of-
the-art theorem proving technology, for example.

2) Validation of the State Effects Models MDS is based on
a systems engineering approach called State Analysis, which
provides a process for system modeling via state discovery.
The primary product of the State Analysis process is a State
Effects Model, which captures the physical model describing
the evolution of each state in the system, as well as the
physical relationships between different state variables in the
system. The State Effects Model compiles information
traditionally documented in a variety of systems engineering
artifacts, including the Hardware Functional Requirements,
the Failure Modes and Effects Analysis, the Scenario
Description Document, and the Hardware-Software
Interface Control Document. Information from the State
Effects Model is used throughout the mission software,
including in the elaborations of goals into subgoals on
related states, and in the estimation and control algorithms.
As an explicit, formal representation of this type of critical
system information, the State Effects Model provides the
opportunity to perform a more thorough validation of the
physical assumptions embedded in the mission software.
Validation of the State Effects Model consists of checking
the model for completeness (e.g., has a relevant state been
omitted? has a relevant influence relationship been omitted
between states in the model?) and correctness (e.g., have we
included an incorrect influence in the model? are there any
undesired “loops” in the influence model?). Whereas

 11

correctness checking may be enabled using some form of
state-of-the-art model-checking, completeness checking
most likely requires inspection by mission systems
engineers.

3) V&V of Goal Elaborations and Goal Networks As
discussed above, an MDS-based system is controlled by
issuing goals on state variables, rather than the traditional
approach of issuing low-level commands. A goal is formally
defined as a constraint on the values of a state variable over
a time interval. In MDS, each goal elaborates into a network
of subgoals on related states, as specified in the State Effects
Model. These goal elaborations form the building blocks
for the goal-based “sequences” that are executed onboard
the spacecraft, called goal networks. Currently, goal
elaborations are explicitly specified by systems engineers,
and translated into executable form using a Goal Elaboration
Language (GEL). Goal elaborations must be both validated
and verified. Validation of a goal elaboration consists of
checking the correctness and completeness of its
specification: the goal elaboration must include correct
subgoals on all appropriate related states in the State Effects
Model. Verifying a goal elaboration consists of determining
whether the GEL code associated with a specified goal
elaboration correctly maps to the systems engineer’s
specification. Goal networks are generated by compiling and
combining goal elaborations for multiple goals in support of
the execution of an operational activity. Goal networks can
either be pre-specified on the ground and uplinked to the
spacecraft, or generated onboard from a set of stored goal
elaborations. An operations scenario (or “plan”) expressed
as a goal network must be checked for correctness, which
would include checking that it does not specify any
conflicting or adversely interacting goals.

4) Verification of the Real-time Execution
Mechanisms Given a plan corresponding to a set of
executable goals, MDS executes the plan by dispatching the
goals to various components (estimators and/or controllers)
for achievement. To accommodate components that run at
different frequencies and with different priorities, MDS’
real-time execution mechanism specifies a set of threads,
with each thread corresponding to a particular frequency and
priority. MDS employs a soft real-time component
scheduler, to manage the execution of its multiple threads. In
this design, uncertainty in the actual run-time of the software
components can result in missed deadlines (where a thread
fails to start by its specified start time or fails to end within
its specified time window) and execution over-runs (where a
component takes more CPU cycles to complete than the
scheduler had anticipated). Verification and validation of
MDS’ real-time execution mechanisms consists of: (1)
checking that the behavior of the current component
scheduler design is consistent with its stated requirement:
even in the presence of misses and over-runs, computational
integrity of the MDS execution mechanisms is maintained
(i.e., execution continues, even when miss and over-run

events occur); (2) validating a variety of miss and over-run
handling mechanisms; and (3) evaluating the performance of
the MDS execution mechanisms with respect to the
specification of “ideal” behavior: even in the presence of
misses and over-runs, no scheduled goals fail due to cycle
slips.

We have initiated the process of identifying applicable
research and state-of-the-art V&V technologies, such as
those described earlier in this section, which can be brought
to bear on our list of MSL/MDS needs and opportunities.

5. FUTURE WORK

The objective of this paper is to serve as the first step in
assessing software risk to MSL and to identify appropriate
V&V techniques that can be used to prevent or mitigate
these risks. The ultimate goal is the attainment of sufficient
confidence in the reliability of the mission-critical software
resulting from the development process. The selection of
which V&V techniques to apply, where to apply them, and
how thoroughly to apply them, is key. In this section, we
propose using the JPL-developed Defect Detection and
Prevention (DDP) process to perform trade analyses on the
defects we have enumerated and the possible ways to
mitigate them.

DDP Approach to Trade Analyses for Assessing Software
Risk vs.Mitigation Cost

Development of MSL’s software, like any other software
development effort, is resource-constrained: schedule,
budget and other resources (e.g., availability of personnel, of
testbeds, of copies of the hardware that the software is to
operate) are limited. Selection of V&V activities must
therefore be done judiciously, taking into account both
benefits and resource costs. For this purpose, our intent is to
make use of DDP for cost- and benefit-based risk-informed
decision-making. Custom software supports the application
of DDP.

DDP manipulates three sets of information: “objectives” (the
desired properties of the artifact being developed), “risks”
(loosely speaking, all the things that would detract from
attainment of objectives), and “mitigations” (options for
preventing, reducing and/or mitigating the likelihood and/or
severity of risks). DDP’s key ideas are to (1) explicitly relate
risk to objectives (for evaluation of risk severity, and
permitting tradeoff decisions among objectives), and (2)
explicitly relate risk to the options for risk-reducing actions
that might be taken during development and operation. DDP
computes the benefit of a selection of “mitigations” in terms
of expected attainment of objectives (taking into account the
risk-reducing effects of those mitigations), the cost of a
selection of mitigations, and the repair costs for problems
that they uncover (e.g., when applying a unit test, there is
both the cost of the test itself, and the cost of repairing any
bugs that test reveals). For more details, see [15]. The use of
DDP for software assurance planning is discussed in [16].

 12

For the purposes of V&V planning for MSL, software
defects (examples of which are listed in the appendix) are
represented as DDP’s “risks”, and the V&V activities are
represented as DDP’s “mitigations”. The components of the
mission software (e.g., Algorithms, Fault Protection) are
represented as DDP’s “objectives” (this allows us to capture
the distinction between a defect in one component vs. in
another).

The current status of the software defects information is that
the links between items (e.g., relating the traditional V&V
technique of “Boundary Value Analysis” to the defect
“Array Overrun”) indicate some connection, but not the
strength of that connection. In order to make use of DDP’s
quantitative reasoning, we will need to augment these links
with quantitative information (e.g., if “Boundary Value
Analysis” is applied, what proportion of “Array Overrun”
defects would it detect?). Some information of this form is
available (e.g., data on the efficacy of inspections at
uncovering defects, reported in [17]), however we will have
to rely extensively on experts’ estimates.

In the interim, we are able to use DDP to scrutinize the
connectivity of the defects and V&V information. This
allows us to quickly see which kinds of defects are
addressed by which techniques, and vice-versa. The example
in Fig. 5 shows a partial view representing the kinds of
defects, alongside which are listed all the techniques
applicable to preventing and/or detecting such defects.

For the purposes of illustrating DDP’s quantitative
capabilities we make the following simplifying assumptions:

• all defects are assumed to be equally detrimental to the
components of mission software

• all components of mission software are assumed to be
equally important (in practice we will need to assess
these, e.g., we will likely weight highly software fault
protection of the spacecraft hardware, since its correct
performance is critical when called upon.)

• all risk-reducing actions are assumed to be equally
effective, namely capable of preventing or detecting
50% of the kinds of defects to which they are related in
our tables.

We stress that these assumptions are for illustration only,
and not intended to represent our understanding of software
risk and risk mitigation! The first assumption, that all
defects are assumed equally detrimental, will undoubtedly
be revised as we examine the risks associated with each
defect and how each defect could impact the different phases
of the mission. Once this risk assessment has been
performed, the heights of the bars shown in Figures 5 and 6
will reflect the magnitude of the risk that each defect imparts
on the mission goals.

Given these assumptions, Fig. 6 shows the DDP bar chart
displaying overall risk status when all the traditional
processes and V&V techniques, but none of the state-of-the-

art V&V techniques that were described in the “Emerging
V&V Techniques” sub-section, are being applied.

If, in addition, all the state-of-the-art V&V techniques are
applied, then the risk levels drop further, as shown in Fig. 7,
where the yellow portions indicate the drop in risk due to
those state-of-the-art techniques.

Figure 5 - Defect-to-techniques view

Figure 6 - DDP bar chart of risk levels

 13

Figure 7 - DDP bar chart of changed risk levels

These kinds of views allow us to quickly scrutinize the net
risk-reducing effects of candidate selections of techniques.
Budget, schedule and personnel limits preclude the
application of all possible state of the art V&V techniques to
every portion of the MSL software, so it is important to be
able to gauge their effectiveness when making this selection.
MSL’s needs, coupled with the work that has taken place to
gather software defect information and relate it to existing
and emerging V&V techniques, offer an interesting and
challenging case study on which to apply this approach.

Use of this approach relies extensively on experts’ estimates
of the quantitative values. Our experience using DDP on
studies of spacecraft technologies and in ongoing use on an
entire mission has suggested that such estimate-based inputs
are valid and can lead to valuable insights. In these
applications we have found that most of the results
calculated by DDP, based on the information gathered from
the multiple discipline experts, match those experts’ overall
intuitions. For example, DDP’s list of most significant risks
that remain despite application of mitigations is usually in
agreement with what the experts tell us they would have
expected. Overall this suggests that the detailed information
we are gathering from those experts, and the ways we
combine that information in DDP’s risk calculations, is
reasonably valid. Furthermore, in almost every case study
there is some result calculated by DDP that is a “surprise”.
That is, it does not match the experts’ intuitions (e.g., a risk
shows up as more significant than they would have
anticipated). When the experts look at the detail
underpinning that result (and the capability of DDP to let
them explore the details as well as see the big picture is
crucial in this regard), they concede that the “surprise” is a
genuine finding. Overall this suggests that the approach we
follow is capable of findings that would be overlooked by
even a well-qualified set of experts.

Technology Infusion

Once any new V&V technologies have been identified, we
must address the issue of technology infusion. The MSL
program is defining a formal approach to addressing this

issue, and is publishing guidelines for infusion of new
technologies that are in the pipeline for flight on MSL, as
well as V&V technologies that will support acceptance of
these new technologies.

5. CONCLUSIONS

NASA's MSL mission is planning to launch a robotic rover
to Mars in 2009. The aspirations of this mission include
adopting a new approach to architecting and developing
mission software, and introducing capabilities such as goal-
based commanding and long-range traverse that exceed
previous Mars rovers. Along with these enhanced
capabilities come V&V challenges that must be met in order
to gain sufficient confidence in this software-centric
interplanetary traveler. This paper reports on the beginning
of our journey in charting MSL's V&V course. Risks to a
mission due to software stem, in part, from software defects
that are introduced at each phase of the software lifecycle, as
well as limitations of traditional mission software designs.
Current practices used by aerospace and other industries to
verify and validate the software products tend to rely heavily
on the use of testing to uncover defects that were introduced
in earlier phases of the software lifecycle. Numerous
additional tools and techniques are either available today or
will be ready for use in the near future to detect defects
further upstream in the software development process and to
prevent defects from being introduced in the first place.
These new tools and techniques offer a more diverse and
potentially more cost-effective and comprehensive approach
to software V&V - a refreshing paradigm shift to our test-
centric view as we attempt to keep pace with the trend for
mission software to expand and increase in complexity.

MSL’s adoption of the MDS architecture squarely addresses
and overcomes the inherent limitations in traditional mission
software design identified in this paper; however, it
introduces new V&V challenges that must be explored,
understood, and addressed. For example, MDS’s explicit
representation of spacecraft states offers a unique
opportunity to verify the correctness and consistency of
information that previously was implicitly embedded in
algorithms. In addition to capitalizing on these new V&V
opportunities, the issue of risk mitigation due to software
defects still must be systematically addressed and managed.
JPL’s DDP tool provides a mechanism to perform risk vs.
cost trade analyses to assess and identify comprehensive, yet
cost-effective plans to ensure the quality, integrity and
robustness of MSL’s rover software system.

 14

ACKNOWLEDGEMENT

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government
the Jet Propulsion Laboratory, or the California Institute of
Technology.

 REFERENCES

[1] T. DeMarco, Waltzing With Bears: Managing Risk on
Software Projects, Dorset House, March 2003.

[2] S. Nelson and J. Schumann, “What Makes Code Review
Trustworthy?,” 2004 Hawaii International Conference On
System Sciences, January 5–8, 2004.

[3] D. Dvorak, “Challenging encapsulation in the design of
high-risk control systems,” 17th ACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA'02), 2002.

[4] E. Gat and B. Pell, “Smart executives for autonomous
spacecraft,” IEEE Intelligent Systems, 13(5):56–61, 1998.

[5] D. Watson, “Model-based autonomy in deep space
missions,” IEEE Intelligent Systems, 18(3):8–11, 2003.

[6] N. Rouquette, P. Gluck, and R. Kanefsky, “The 13th
technology of Deep Space One”, 5th International
Symposium on Artificial Intelligence, Robotics and
Automation in Space (ISAIRAS'99), 1999.

[7] E. Gat, “The MDS autonomous control architecture,”
Fourth World Automation Congress (WAC), International
Symposium on Intelligent Automation and Control
(ISIAC'2000), 2000.

[8] Interview with Dale Mackall, Sr. Dryden Flight Research
Center Verification and Validation engineer on January 16,
2003.

[9] M. Zelkowitz and I. Rus, “Understanding IV&V in a
Safety Critical and Complex Evolutionary Environment: The
NASA Space Shuttle Program.” 23rd International
Conference on Software Engineering, 349–357, May 2001.

[10] ANSI 982.1-1989 and 982.2-1989: Measures to
Produce Reliable Software.

[11] S. Nelson and C. Pecheur, “V&V of Advanced Systems
at NASA”, NASA/CR-2002-211402, NASA Ames Research
Center, April 2002.

[12] “Formal Methods Specification and Analysis
Guidebook for the Verification of Software and Computer
Systems, Volume II: A Practitioner's Companion”, NASA-
GB-001-97, 1997.

[13] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks,
“Software architecture themes in JPL's Mission Data
System”, AIAA Guidance, Navigation, and Control
Conference, 1999.

[14] R. Rasmussen, “Goal-based fault tolerance for space
systems using the Mission Data System”, 2001 IEEE
Aerospace Conference, 2001.

[15] S.L. Cornford, M.S. Feather and K.A. Hicks; “DDP - A
tool for life-cycle risk management”, 2001 IEEE Aerospace
Conference, 441–451, Mar 2001.

[16] M.S. Feather, B. Sigal, S.L. Cornford and P.
Hutchinson: “Incorporating Cost-Benefit Analyses into
Software Assurance Planning”, 26th IEEE/NASA Software
Engineering Workshop, Nov 2001.

 [17] F. Shull, V.R. Basili, B. Boehm, A.W. Brown, P.
Costa, M. Lindvall, D. Port, I. Rus, R. Tesoriero and M.V.
Zelkowitz, “What We Have Learned About Fighting
Defects”, 8th IEEE International Software Metrics
Symposium, 249–258, 2002

BIOGRAPHIES

Martin Feather is a Principal
in the Software Quality
Assurance group at JPL. He
works on developing research
ideas and maturing them into
practice, with particular
interests in the areas of
software validation (analysis,
test automation, V&V
techniques) and of early phase requirements engineering
and risk management. He obtained his BA and MA degrees
in mathematics and computer science from Cambridge
University, England, and his PhD degree in artificial
intelligence from the University of Edinburgh, Scotland.
For further details, see http://eis.jpl.nasa.gov/~mfeather

Lorraine Fesq is a Principal
Engineer in the Software
Systems and Operations
Engineering Section at JPL.
Her passion is to raise the
intelligence and thereby
increase the capabilities of
spacecraft. She is leading
MSL’s effort to identify and
mature promising new V&V technologies that will augment

 15

confidence in the rover’s behavior. She obtained her
Bachelor’s degree in mathematics from Rutgers University,
and her M.S. and Ph.D. degrees in computer
science/artificial intelligence from UCLA.

Michel Ingham is a Software
Engineer and member of the
Senior Technical Staff at JPL,
where he is a member of the
software architecture team
for the Mission Data System.
His roles include the
development of the State
Analysis modeling and design methodology, and the
application of this methodology to the MSL mission. He
received his Sc.D. and S.M. degrees from MIT's Department
of Aeronautics and Astronautics, and his B.Eng. in Honors
Mechanical Engineering from McGill University, in
Montreal, Canada.

Suzanne Klein is a senior flight software
engineer and test lead at NASA JPL.
She is currently working on the Software
Quality Improvements Project, an
initiative designed to improve software
throughout the lab through the
introduction of ISO and CMMI
capabilities and practices.

Stacy Nelson is a
technology infusion
consultant for NASA
specializing in software
verification and validation.
 She has successfully
applied state of art V&V
technology to 2nd
Generation Reusable Launch Vehicle, Intelligent Flight
Control Systems, Autonomous Rotorcraft Project and is
currently working on validation of Mars Science
Laboratory.

 16

APPENDIX

The table shows for each of the software lifecycle phases, sample defects and techniques to prevent/detect them.

Lifecycle

Phase
Potential Defect Traditional V&V

Techniques
Traditional
Processes

V&V State of the Art
Tool

System
Requirements

Inadequate Test Case
Coverage

Coverage Analysis,
Partition Testing,

FTA/FMECA Software Synthesis Tool,
UBET

Software
Architectural

Design

Processor Resets Not
Supported. Flight software
not designed to support
processor resets during
mission-critical events (like
entry, descent and landing)

Analytic Modeling,
Critical Flow
Analysis,
Event Tree Analysis,
Prototyping

Design Reviews ACME,
LTSA,
Rapide,
SPIN

Software
Detailed
Design

Performance Issues
(memory and timing)

Analytic Modeling,
Control Flow
Analysis, Prototyping,
Simulation,
Sizing and Timing
Analysis

Design Reviews ACME,
LTSA,
Rapide,
Software Synthesis Tool,
SPIN,
UBET

Coding Off-By-One Errors. Any
off-by-one iteration errors

Boundary Value
Analysis

Code Reviews ACME,
LTSA,
Rapide,
Software Synthesis Tool,
SPIN,
UBET

Software
Integration

No Integrated Regression
Testing

Regression Analysis
and Testing

Configuration
Management,
Change Control
Board,
Problem Tracking

FeaVer,
LPF,
Pathfinder,

System
Qualification

Testing

System Response Time
Threshold Untested.
Threshold in terms of system
response time was not tested

Back-to-Back
Testing, Performance
Testing,
Sizing and Timing
Analysis,
Stress Testing

Rovers,
Simulators,
TestBeds,

 17

